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ABSTRACT 
The architecture of Unmanned Aerial Vehicles (UAV) is composed of several key components to optimize 
their efficiency as well as their operability in critical contexts such as in air combat or air surveillance 
applications. Our research work implements an innovative human expert-derived assessment policy into 
autonomous collaborative agents for determining the threat level of an UAV. Our objective is therefore to 
use a cognitive engineering technique called policy capturing to configure an operational threat assessment 
capability that is aligned with human cognition. This consists of the following two steps. The first step is the 
integration of a cognitive modelling system into the autonomous agents. This provides recommendations and 
warnings concerning the threat level assessment based on previous decisions of the experts. It may thus 
present capabilities of transparency and explainability using real decision-making patterns extracted from 
human reasoning. In other words, this cognitive modelling system helps make explicit some of the implicit 
elements in expert decision-making. Additionally, a multi-model approach was adopted and deployed using 
seven simultaneous supervised machines learning algorithms to predict the threat levels by mimicking expert 
decisions without being subject to fatigue, stress or distraction. These algorithms are based on enhanced and 
fine-tuned python scikit-learn modules: Logistic Regression (LR), Decision Tree (DT), K-nearest neighbours 
(KNN), Multi-layer perceptron neural network (MLPNN), Naive Bayes (NB), Support Vector Classifiers 
(SVC), as well as Random Forest (RF). The second step consists in transmitting the response provided by the 
expert policy to the situation awareness module of the autonomous agents. To accomplish it, we perform a 
fusion of the threat level identified by the expert policy and the initial threat level already identified in the 
autonomous agent. To achieve this objective, a simulated environment was used to provide a use case of 
critical asset protection. This use case is composed of four threat levels, ranging from criminal intent to 
clueless. The solution attempts to maximize the neutralization rate of ‘real’ threats by managing or 
prioritizing the number of target drones to be tracked and neutralized according to their threat level. In 
other words, the defensive swarm of drones prioritizes its response by first addressing the criminal profiles, 
aiming for neutralization with the highest priority, continuing with careless and then clueless profiles. The 
defensive swarm adopts a “watchdog” behaviour, adapting to the sudden change in the threat level, for 
example, when any threat approaches too close to a protected area. It is important to mention that, without 
the expert policy, all enemy drones are considered equally threatening, and no priority is given, leading to a 
greater risk of not neutralizing the actual threats. Directions for future work include investigating how to 
improve human-autonomy teaming through mutual understanding and anticipation capabilities enabled 
through online learning and explainable AI methods. Furthermore, another potentially disruptive capability 
enabled by this method could be for a swarm of drones to learn to anticipate online the behaviour patterns of 
adversary drones to adapt on the fly and achieve cognitive air superiority. 

1.0 INTRODUCTION 

The development of autonomous system has been perceived as a tool to enhance the efficiency and, 
performance of human operators, helping reduce the workload, stress and errors made by humans [1]. The 
rise of autonomous collaborative agents has engendered a major shift within the field of surveillance and 
reconnaissance [2]. A common mis-conception is that that such collaborative autonomous agents will replace 
humans or eliminate human error. The automation paradox refers to the notion that in fact it can trigger new 
types of errors and new types of issues such as the deterioration of human skills and performance due to the 
abuse of automation [3]. Additionally, being able to trust autonomous systems has often been an issue 
especially in the field of defence and security, where it is often mandatory to keep humans in the loop. 
However, this raises issues such as “false-reassurance of human in the loop” where humans are often given 
the role of supervisors monitoring very complex fully autonomous systems, yet resulting in loss of 
situational awareness (SA) or even decrease in the overall implication of humans even if they still require to 
validate or give certain commands to the systems. SA is not only crucial to human performance but as well a 
challenge in autonomous systems and in cases of human-autonomy teaming.  
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1.1 Team Situational Awareness (TSA) 
TSA is a key component of teaming performance. It can be described as “knowing what is going on around 
you” and being cognizant of how to understand interpret and extract information about the environment [4]. 
SA also relates to some of the human biases when it comes to decision-making such as: i) attentional 
narrowing/tunnelling; ii) memory shortage; iii) workload, fatigue, stress, reaction time; iv) data overload; v) 
maladaptive mental models (eg., non-logical reasoning or inappropriate behaviour); vi) disuse or abuse of 
automated systems [5, 6]. Herein, we are particularly interested in the challenge of enabling effective 
situation assessment by artificial agents controlling unmanned aircraft [5]. In this research we develop a new 
potential method offering decision support not only to humans but also to autonomous systems, which could 
help maintain high levels of SA within the application of collaborative autonomous UAV systems.  

1.2 Situational Awareness and Human-Automation Teaming of UAV 
Human-autonomy teaming (HAT) refers to the ability between human and automated systems to be able to 
coordinate and collaborate interdependently towards a common task or goal [5]. Lack of SA in both humans 
and machines could be detrimental to the performance of the team. Studies on military use of unmanned 
systems found that 33% of mishaps were caused directly by humans, and that 67% were due to issues with 
the machine [8]. Other statistics from U.S. Department of Defense claim that human error contributes to 20-
70% of UAS mishaps in the military [9]. Those metrics vary based on the HAT however common patterns of 
error in humans: skill-based, procedural, checklist, inadequate operations or the over or under-control over 
its autonomous systems versus machines tend to fail within the set-up, monitoring, failure of detection and 
diagnosis [8]. Researchers have demonstrated that mixed initiative target identification where an automated 
agent provides assistance in locating potential targets in a visual search space actually deteriorated 
performance consistently over time [10]. They suggest that automated agents who are trained to detect 
particular stimuli may not perform as well as an alert human [10]. Therefore, it is important when designing 
HAT frameworks to explore methods of reducing risks, increasing safety and reliability based on each 
agent’s limitations and strengths. Autonomous systems face major trust challenges in terms of explainability 
as sometimes it is often difficult for such systems to provide reliable, understandable information to assure 
adequate cooperation and collaboration [11]. Lacking awareness and understanding of the automated agent 
would only reinforce the out of-the loop phenomenon [12].  

1.3 Objectives  
We present a prototype solution aimed at allowing artificial agents to learn from human experts how to 
assess a given type of situation. The use case selected for this study consists in threat assessment in a 
counter-drone scenario for critical asset protection. This proof-of-concept investigation constitutes a first step 
in a cognitive systems engineering (CSE) research endeavour aimed at iteratively testing and improving 
HAT capabilities using human-in-the-loop synthetic testing environment. The CSE approach focuses on 
enhancing the human ability to understand and control systems and, often plays a key role in developing 
adaptive/intelligent/learning frameworks [13]. While past work has advanced adjustable autonomy methods 
for human-UAV collaboration [13, 14, 15, 16, 17], adaptability has been mostly based on the environment, 
use-case and objectives of the mission (e.g., varying the number of UAVs per operator) [14]. However, no 
studies have yet demonstrated this adjustability through the use of expert modelling for transferring situation 
assessment policies to artificial agents to enhance system autonomy and HAT collaboration capacity. In this 
paper we present the proposed framework in Section 2, our use case application of threat detection in Section 
3, the method in Section 4, results in Section 5 and conclusions in Section 6.  
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2.0 FRAMEWORK AND ARHICTCETURE: EXPERT MODELING & 
AUTONOMOUS AGENTS 

The new solution investigated here combines the use of an AI-based decision-support system called 
Cognitive Shadow (shadowing of the expert and automatically learning from observed decisions/behaviour 
patterns; [18, 19]) with Synergetic Partners with AI-Reinforced IQ (SPARQ) a platform for implementation 
and optimization of collaborative autonomous systems. Both systems are merged into a joint capability 
resulting in a framework where human operator(s) and autonomous agents can engage in joint learning, 
coordinate and share information. This HAT enables agents to collaborate towards a joint mission, and 
reflects complementary adaptive frameworks for mission management with high level of autonomy [17].  

2.1 SPARQ 
SPARQ is an AI Agent solution capable of working in synergy with human operators and of creating 
complex multi-function collaborative platforms. SPARQ enables the development, deployment and testing 
of multi-agent use cases, where other agents can be either artificial or human. It allows humans and AI 
agents to work together toward a common goal through the use of its associated teaming framework. 
SPARQ is composed of three major component within its “Digital Twin”: i) Awareness capabilities 
involving the representation and understanding of the AI agent of the current situation and its history, using 
sensors and simulation models; ii) Anticipation capabilities involving the ability to forecast how the current 
situation may unfold based on what-if scenarios; iii) Decision capabilities involving the ability to come up 
with a plan of action based on the inputs from the awareness and anticipation modules. This system has been 
implemented and tested using real hardware or operating systems such as a UAV fleet, ground 
control stations and smart sensors. It enables to have organized teams in swarms. These AI-powered systems 
can carry out complex and diverse missions autonomously, thanks to their ability adapt and reconfigure 
in real-time.  

2.2 Cognitive Shadow  
Cognitive Shadow enables the automatic modelling of expert decision and behaviour patterns using a state-
of-the-art policy capturing methodology combining multiple supervised machine learning algorithms [20-
21]. Such expert-derived cognitive models support a process called judgmental bootstrapping, where models 
tend to be more reliable than humans because those models are not subject to fatigue, stress, distraction and 
mental overload [22, 23]. This effect was repeatedly observed using Cognitive Shadow leading to the 
successful reductions of error rates ranging between 4% and 36% [22-24].. Integrating Cognitive Shadow 
within SPARQ allows for the personalization of decision-support systems to enable teamed partners 
(automated agent and human pilot or operator) to get real-time recommendation while optimizing the 
mission performance. In addition, it allows for the prioritization of information based on the expert-policy 
and allows extracting contextual information requirements. It keeps humans in the loop of autonomous agent 
decisions in two ways: i) The use of an AI-algorithm trained on human expert(s), ii) real-time suggestions 
and interaction [25]. The approach supports explainability and transparency as each decision is based on 
human expertise and understanding. It offers support not only to humans in challenging error-prone 
conditions but also to autonomous collaborative agents such as a swarm of drones. 

3.0 THREAT CLASSIFICATION 

The use-case selected for this investigation focuses on enhancing homeland security using UAV systems by 
detecting threats surrounding a protected facility. The use of a digital-twin UAV architecture has been a 
significant step foward for situation monitoring and anomaly detection to enhance security [27].  
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3.1 Threat Detection Types 
Threat assessment is heavily reliant on the context and the situations. In this study we are focusing on UAV-
counter measures for the protection of a restricted area. It is important to consider the different types of 
possible threats within the environment, in order mimic and replicate the reality of their occurrences. The 
type of threat is often based on the different uses of UAVs such as civilian, terrorist, military or criminal use 
[26]. Examples of malicious use from a terrorist could be surveillance or suicidal drone, versus a considerate 
use for civilians could be for disaster response, tourist use and cinematography, aids & supplies, or even 
commercial ads [26]. However, other research has focused on different types of threats such as Hacking, 
spoofing, jamming, malware infection hardware attacking [26, 27]. For the present use-case we relied on 
past work on threat level assessment to determine the threat levels and factors [28].  

3.2 Existing Methods of UAV-Threat Assessment 
Diverse threat assessment and detection techniques have been researched. One approach focuses on 
malicious intent of non-cooperative drone surveillance with final destination estimation [29]. Others use 
rule-based intrusion detection which is developed by defining the types of attacks of concern and 
implementing them as such “reckless”, “random”, “opportunistic attack”, allowing the minimization of 
detection error including false positive and false negative rates. However, this method often remains 
simplistic and is not able to recognize unknown types of attacks [26]. Methods might vary based on the 
prioritization of certain sensors such as acoustic detection, motion or camera detection, thermal detection and 
radar detection [8]. Across those methods the threat assessment process remains essentially the same. It is 
composed of: i) a detection phase involving the ability to identify an entity; ii) discrimination, meaning the 
ability to accept some input patterns and reject others; iii) a classification step based for example on the types 
of aircraft (fighters versus bombers), iv) a recognition step about the different types or levels of threats; and 
v) identification of the types of action required in response.  

3.4 Threat Assessment Algorithm & Features 
The deployment of intelligence and HAT platforms can improve homeland security and safety of missions 
where SA is considered a major component of tactical superiority and tactical trajectory planning for multi-
aircraft missions [28]. One of the most popular methods to leverage threat assessment with AI has been 
through Bayesian Network Models. An example in [28] has demonstrated the feasibility of this approach 
using four event nodes: i) types of recognition (eg., radar imaging, electronic, infrared, or visible light 
imaging reconnaissance; ii) topographic features (eg., data of the terrain and geomorphic features of the 
enemy’s weapons location); iii) weather types (eg., visibility of sky); iv) electromagnetic environment (EE), 
eg., radiation, probability of being detected by the enemy equipment. Such features could help assess the 
level of threat or probability of detecting malicious UAVs. Similarly, [30] demonstrated the need for 
dynamic Bayesian network and Markov decision processes for tactical UAV decision-making in HAT 
scenarios. This work also highlighted how expert commanders conduct assessments such as reasoning and 
decision-making on how/where/when to deploy available resources in order to increase probability of 
survivability and accomplishment of the given mission [30]. This was combined with features such as target 
type, weapon type, affiliation (friend, enemy, neural or unknown), distance to the entity of interest, detection 
radius, weapon range, speed, direction, and type of terrain. They have encoded such features in into rule-
based models to assess the classification. Other work in [31] demonstrated the use of a support-decision-
making support system for UAV threats. It uses fused knowledge-based and sensor-based classification 
performance in order to classify threat levels. They tested three strategies i) Velocity-based rules using 
purely the change of acceleration spread through four classes, where acceleration is an indicator of risk; ii) 
Distance from the protected facility; and iii) velocity and velocity-change pattern categorised within 5 levels. 
[32] used dynamic Bayesian Network model, using similar features. However based on domain expert 
knowledge, they added vehicles types and characteristics: bombardment aircraft need to dive to medium 
height to make pinpoint bombing, electronic jammers and early warning aircraft are often at high altitudes 
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[32]. Lastly, [33] used Bayesian Network used the types of EE (military, civilian, no emission), radar type 
(civilian, military), jammer (on vs off), as well as mission type (reconnaissance, commercial light, illegal 
flight, other) and, speed (subsonic, transonic, supersonic, hypersonic).  

4.0 METHODS  

4.1 Experts 
The first step of the pipeline was generating interviews on four experts. We interviewed three experts in the 
field of Aerospace and Navigation from Thales Land and Air Systems, as well as Thales Canada Defense & 
Security, Royal Canadian Mounted Police experts in counter UAV. A fourth expert was a fighter jet pilot. 
The experts helped provide feedback on the scenario and helped validate inputs for expert policy modelling. 
In addition to expert feedback, we drew from the previous research listed above in order to ensure that the 
proof-of-concept study was based on realistic assumptions.  

4.2 Simulation and UAV 
This study involved using AI agents and simulated enemy UAV which needed to be neutralized based on the 
defined use-case and experts feedback. Each simulated UAV represented a quadrotor drone provided and 
developed by Autonomous Robotic Aviation (ARA). In order to train our HAT we used SE-STAR simulator 
[34] which enables us to develop counter-UAV simulation scenarios. This allowed simulating the different 
threat levels using a customizable terrain with specific dimensions of the land and zone to protect. The 
simulation involves blue agents (the defence team), red drones (threats to assess), the ground control station 
and radars. By connecting SPARQ to the drone simulator we can simulate interaction between the drone and 
the environment (i.e., simulated sensing and physics). The setup provides a testbed for our HAT teaming 
framework with expert policy model. Through this implementation, it enables us to have a dynamic 
environment and the possibility of human-in-the-loop interaction. It also allows generating training and 
testing data, situational awareness metrics and teaming performance. Such simulated tests can help find 
potential gaps, dysfunctions and fallacies within our framework and policy, which need to be addressed prior 
to subsequent field testing stages.  

 

Figure 1: SE-STAR Simulation demonstrating the red and blue force, and ground control station. 
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4.1.1 Use-Cases  

Following the interviews and feedback with experts, we extracted four different types of behavioural threat 
levels. They correspond to four UAV user profiles often found within the context of restricted zone 
protection. The four levels are labelled as Clueless, Careless, Criminal No Harm and Criminal with Harm. 
Each of these categories is described within Table 1.  

Table 1: Threat Levels Classification 

Threat Levels Definition 

Clueless  A UAV is a Beyond Visual Line of Sight (BVLOS) hobbyist testing their drone 
without any knowledge about airspace.  

Careless A UAV considered a supply delivery drone whose flight plan has been defined without 
consideration of the restricted airspace.  

Criminal  
No Harm 

A UAV navigated by a curious photographer getting closer to the restricted area to take 
pictures.  

Criminal  
with Harm  

Is a UAV terrorist-operated drone with an explosive payload. UAV reduces its altitude 
while approaching its final target.  

The four behaviours are then analysed with respect to a division of the terrain of three zones: Restricted 
Zone, Buffer Zone and the Detection Zone as illustrated in Figure 2. Using this simplified representation of 
the surrounding terrain we were able to conceptualize and generate different types of profiling behavioural 
patterns mapped to each of our Threat Levels. The important part of this method is that the dimensions of 
each of the zones are mapped onto our simulated environment SE-STAR to ensure the continuity and 
application of the parameters and configuration as a realistic environment.  

 

Figure 2: Zone delimitations (Detection, Buffer, Restricted zone). 

4.2  Model Pipeline 
The general pipeline of this threat detection algorithm can be broken down into several steps. The first step 
was the computational representation of the threat identification process such as recognition, classification 
based on literature review and expert interviews and feedback. That step allowed formalizing the features 
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used during the threat assessment of experts, and enabled modelling the environment and real-time 
computation of those features. Once the features and variables were selected, we then proceeded with 
extracting the relevant features from the Digital Twin component in SPARQ. The digital twin then 
engenders a process called State Mapping which is part of the Situational Awareness module of SPARQ. It 
enables pre-processing and feature engineering from raw to interpretable data. This allows the feature values 
to be transmitted to Cognitive Shadow for expert-model for training and testing.  

4.2.1 Digital Twin and State Mapper  

Digital Twin’s component enables information collection from its SA module through sensors. It is 
composed of over twenty elements such as the timestamp of each first and last observation, the name of the 
entity, the types of alliance, altitude, position, heading, velocity, uncertainty, sensors available, as well as the 
zone within which the entity is located. In order to select the most relevant feature needed for the application 
of the situation assessment policy, we have certain requirements and restrictions. The primary feature, which 
enables filtering the data input to the threat assessment policy, is based on the type of detection “EntityType” 
(drone, bird, unknown). Secondly, the feature selection requirement is based on allegiance: friend, enemy, 
neutral or unknown. The feature transformation process is known as the State Mapper which collects the 
relevant information and transforms it into interpretable features. The State Mapper enables the drone to 
track information about the environment, which is then used to understand, decide and act. Table 2 
summaries the list of features used in this study. 

Table 2: Digital State Mapper Features. 

Features Definition Feature Engineering Encoded 

Speed The velocity of the drone 
measured in m/s.  

[Low, Medium, High] [0,1,2 ] 

Altitude Position of the UAV with 
respect to the ground. 

[Low, Medium, High] [0,1,2 ] 

Direction 
Azimuth 

Angular position with respect to 
the restricted area.  

[Right, Left, Front, Rear] [0,1,2 ] 

Zone The zone within which the UAV 
is currently positioned.  

[World, Buffer, Restriction] [0,1,2,3 ] 

Direction 
Elevation 

Angular position with respect to 
restricted area 

[Up, Level, Down] [0,1,2 ] 

Acceleration The acceleration of the UAV [High, Medium, Low Deceleration, 
None, High, Medium, Low 
Acceleration] 

[-3,-2,-
1,0,1,2,3] 

Distance  The distance of the red UAV 
from the restricted zone.  

[Very Far, Far, Close, Very Close] [0,1,2,3] 

Past Threat 
Levels 

The previous classification 
based on the expert policy.  

[Clueless, Careless, Criminal No Harm, 
Criminal with Harm] 

[0,1,2,3 ] 

Each of these features is also associated to time –n which means that the SA enables keeping a memory of 
previous instances mapped to previous classifications.  
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4.3.1 Training and Modelling  
The first step once we have the features selected and expert policy defined is to be able to prepare the dataset 
for training and testing. We used stratified sampling to identify the right criteria for online training, model 
optimization and cross-validation will be based on. Cognitive Shadow simultaneously trained multiple 
supervised machine learning algorithms and selected the best model in terms of proportion of correct 
classifications on the 10 held-out data samples in a standard 10-fold cross validation procedure.  

4.3.1.1 Supervised Learning Algorithms 
Cognitive Shadow enables the training and testing of seven different algorithms: Naïve Bayes, Decision 
Tree, K-nearest neighbors, Support vector machine, Logistic Regression, Feedforward Neural network, 
Random Forest. During the training process, Cognitive Shadow also performs hyper-parameter tuning using 
a randomized search called RandomizedSearchCV (using Scikit-Learn library). Parameters are sampled 
through a list of values as it reduces cost of computationally heavy process compared to traditional 
exhaustive grid search method. A 10-fold cross-validation splitting strategy is performed in the evaluation 
process of the different hyper-parameter settings. The training data is split into ten groups as for the hyper-
parameter selection and model evaluation. This then leads to the section of the best estimator. In order to 
prevent overfitting, we implemented a second 10-fold cross-validation loop with fixed hyper-parameters. At 
each of the 10 iterations, the confusion matrices is computed for the validation (test) subset. Then the 
precision, recall and F1-score are calculated from the validation (test) confusion matrices.  

5.0 RESULTS AND DISCUSSION  

5.1 Model Performance  
In order to analyse the results, it is ideal to ensure we have balanced classes (types of threats). Our synthetic 
training data was composed of 22% of Clueless, 22% of Careless while having 28% CriminalNoHarm, and 
28% of CriminalWithHarm (totalling 716 instances post-label distribution). For the seven supervised 
machine-learning models, results in terms of predictive accuracy from best to worst are: decision-tree model 
(100%), support vector machine (99.72%), neural network (98.32%), random forest (98.04%), K-Nearest 
Neighbours (97.91%), logistic regression (89.38%), and Naïve Bayes (65.78%).  

Training time was also tracked which informs that the worst model required the shortest time of 
(4.52 seconds) compared to the support vector machine which required the most time (over 2 minutes). 
Figure 3 shows the results for each of model in terms of accuracy based on the 10-fold cross-validation, 
training time, total sample count, and prediction accuracy per class.  

 

Figure 3: Results of Cognitive Shadow Model on Threat Detection on the four possible classes. 
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Based on the analysis of model performance per class we note that the class which was the hardest to predict 
is CriminalNoHarm. This can be explained as it is the critical line between not harmful and very dangerous 
behaviour which might entail neutralization. This is often one of the biggest challenges for the operator to 
know when to pull the trigger. Additionally, it is difficult as some harmful behaviour might mask their 
harmful intention until the last minute, which is hard to detect in advance.  

We have also assessed the precision, recall and F-1 score for each category to ensure the model kept high 
accuracy across all types of classification. Through this analysis, we notice an overall higher accuracy for 
Threat Level 1 and Threat Level 2 (the lower threat levels). However, the decision-tree model is the only one 
which remained consistent across all classes with a predictive accuracy of 100%.  

5.1.1 Application Real-Time Implementation CS and SPARQ  

Once the full machine-learning pipeline was developed from State Mapper to Cognitive Shadow, we were 
able to test scenarios in real time. In order to do this we replicated and simulated enemy drones behaving in 
similar ways within SE-STAR. This enabled us to mimic our behaviour of interest to test our machine 
learning model. The trials demonstrated the feasibility of our real-time processing pipeline from SPARQ to 
Cognitive Shadow, and vice-versa, verifying that the expert-policy was properly executed. The output of this 
model enabled augmenting the autonomous systems with human-derived comprehension and the potential 
for extending this capapility to the projection module. This enabled the UAVs to make appropriate decisions 
about how to behave according to threat level: watch-dog, stand-by or neutralization actions.  

5.2 Limitations  
There are several limitations to this first proof-of concept HAT framework. One limitation is the incapability 
of recognizing other types of behavioural patterns outside of the knowledge of the expert. This means our 
model will not be able to recognize other types of attacks or profiling types, if they do not match one of the 
four current classes. Thus, if confronted with a new scenario or unseen or unrecognizable scenario by the 
expert, the model is at risk of misclassification or may even dismiss certain types of disguised behaviour, 
thus requiring humans-in-the-loop to better handle novelty. Additionally, based on our pipeline we rely on a 
chain of action and information processing where if one information is misclassified it could delay or even 
falsify the algorithm results. For example, if the computer vision classifies an observed entity as a bird 
incorrectly, it will result in a miss and the information will be wrongly filtered out without being considered 
by the threat detection algorithm. Similar challenges of video or camera-based detection have been raised 
previously [16]. Certain methods of disguise have already been implemented such as dove drones or bird 
look-a likes [24]. Additionally, similar consequences will arise if the drone is misclassified as a friend. In this 
work we developed a simplified threat assessment model for initial testing and HAT implementation through 
expert modelling. However, more complex behaviour patterns and features could be considered such as 
aircraft types, and being able to recognize payload types (eg., explosives) or being able to track trajectory 
patterns overtime (zigzag, linear, etc.). The simplified ground truth generation rules and feature set used 
herein could have made it easier to achieve the high levels of accuracy observed in this study. Lastly, 
cognitive modelling remains a major challenge as different experts might have different knowledge and 
judgment strategies.  

5.1.1 Future Improvements  

Future work will focus on the implementation of additional environmental features to represent the 
dynamically changing features, which will be fed into the UAV sensors such as light variation, time of the 
day, or weather modification that might affect the possibility to detect and perceive accurately. Another next 
step is to capture a larger range of profiling behaviours and integrate them within the existing four levels of 
threats. This might include taking into consideration different types of malicious UAV but also harmless 
behaviors such as search and rescue. Ultimately, this prototype solution will be deployed and tested in real-
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life using physical blue and red forces drones. This is an important step toward implementing an adjustable 
human autonomy collaboration capability which are capable of high task accuracy even in complex open 
environments. Furthermore, another potentially disruptive capability enabled by this method could be for a 
swarm of drones to learn to anticipate online the behaviour patterns of adversary drones to adapt on the fly 
and achieve cognitive air superiority. 

6.0 CONCLUSION  

This research investigated the feasibility of integrating an automatic policy capturing capability into an AI 
agent framework. An expert-policy for threat assessment in a counter-drone scenario was derived and tested 
both offline and online. This combined capability is seen as a first step towards enabling a human-AI 
co-learning process for HAT in the context of UAV missions and beyond. This framework could enhance 
trustworthiness by enabling faster and more robust situation assessments, with experts in the loop providing 
feedback to their AI counterparts (and vice-versa). This is a step toward achieving human-AI co-learning 
capabilities where both the automated agents as well as human experts are able to learn together and get to 
familiarize with the behaviour and capabilities of their teammates to better adjust to new challenges and 
enhance teaming performance during pre-operation, in-operation and post-operation phases. Capturing 
human cognitive and behaviour patterns in this way may also help improve HAT by allowing AI agents to 
anticipate human actions and therefore better know when and what to communicate and to coordinate 
explicitly or even implicitly like highly trained human teams typically do thanks to their accurate team 
mental models [36].  
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